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Lecture 28 

We now turn to the subject of central importance in thermodynamics, equilibrium.  Since 

we are interested in equilibria under chemically interesting conditions and for chemical 

reactions, we will focus on the Gibbs Free Energy and the chemical potential.  The starting point 

of our development of conditions for equilibrium is the qualitative interpretation of the meaning 

of ∆G that we developed in chapter five.  This was expressed as three conditions: 

If ∆GT,P = 0, we have equilibrium. 

If ∆GT,P < 0, we have a spontaneous process. 

If ∆GT,P > 0, the reverse process is spontaneous. 

This can be partly understood if we remember that this interpretation of ∆G arises from the second 

law of thermodynamics, which states that the entropy of the universe rises in a spontaneous 

process.  So if we draw a graph of the entropy of the universe of some spontaneous process, as it 

progresses we see that the entropy rises until we reach equilibrium and the process progresses no 

further. 

 

 

 

 

 

 

Since ∆Gsys decreases for processes in which ∆Stot increases, it is logical that a graph of Gsys vs the 

progress of the process would display a minimum at equilibrium. 
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Suppose our process is a chemical reaction.  I'm going to make a claim here.  If we know 

the position of the Gibbs function minimum we also know the extent to which the reaction 

will proceed.  Let’s convince ourselves of this by plotting the free energy of some reaction mixture 

vs. its composition.  As the reaction moves from reactants to products the composition of the 

mixture will change as well. 

Say we have a reaction in which almost all of the reactants are converted to products.  Then 

the Gibbs function minimum will be located at a composition on the product side.   

 

 

 

 

 

 

If on the other hand, we have a reaction where the equilibrium composition heavily favors 

reactants, the Gibbs function minimum will be located on the reactant side.  Finally, if we have a 

reaction in which the equilibrium composition is a mixture of reactants and products, the Gibbs 

function minimum will be located between reactants and products.It would be useful to quantify 

these ideas.  To do this we first have to write a quantitative definition of the extent of reaction.  

To understand why we need to define such a quantity consider the following reaction: 
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N2 + 3H2 ↔ 2NH3. 

Suppose for this reaction that 0.5 mol of N2 has reacted with 1.5 mol of H2 to generate 1.0 mol of 

NH3.  Which quantity do we use to describe how far the reaction has progressed?  Defining the 

extent of reaction allows us to solve this problem. 

Here is the basic idea.  The reason the amount produced or consumed for each of the 

reactants or products is different is because each has a different stoichiometric constant.  So, if we 

divide the amount produced or consumed by its stoichiometric factor, remembering that the 

stoichiometric factor is positive for a product and negative for a reactant, we should get a single 

number that characterizes the reaction.  In the case above the change in N2 is -0.50 mol, and the 

stoichiometric factor is -1, so the ratio is 0.5.  For H2, the change is -1.50 mol, and the 

stoichiometric factor is -3, so the ratio is again 0.5.  Finally, for NH3, the change is 1.0 mol and 

the stoichiometric factor is 2, so the ratio is (sigh) yet again, 0.5.  So our idea works.  Dividing the 

change in mols of a substance in a reaction by its stoichiometric factor yields a number, with units 

of mols, which will be the same for every reactant and product.  We call this ratio the extent of 

reaction, and we use it to describe how far a reaction has progressed. 

We can formalize this definition as follows. Suppose we have our generic chemical 

reaction,  

0 = ∑ν i
i

S i( )  

where Si is the ith substance, and νi is positive for a product and negative for a reactant.  During 

this chemical reaction, the change in the number of moles of a given substance, ∆ni, is proportional 

to its stoichiometric factor νi.  The proportionality constant is called the extent of reaction, ξ (xi).  
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Therefore, the extent of reaction is defined as ,0i i i

i i

n n nξ
ν ν
− ∆

≡ = .   

For example, in the reaction PbI2(s) ↔ Pb+2(aq) + 2I-(aq), suppose that 0.05 mol of 

PbI2(s) reacts.  According to our definition, the extent of reaction here is 0.05 mol.  Then 0.05 

mol of Pb+2(aq) will have formed and 0.10 mol of I-(aq) will have formed.  We have ∆n(PbI2) = -

0.05 mol = -1 (0.05 mol), ∆n(Pb+2) = 0.05 mol = 1 (0.05 mol) and ∆n(I-) = 0.10 mol = 2 (0.05 

mol), where the numbers -1, 1, and 2 are the stoichiometric coefficients.   

ξ is a measure of how far the reaction has progressed.  Since νi is dimensionless, and ∆ni 

has units of moles, ξ has units of moles as well. ξ is positive if the reaction proceeds toward 

products and is negative if the reaction proceeds toward reactants. 

This is an important concept so let’s look at an example. 

Example: 

Suppose 0.6 mol of O2 reacts according to 3O2 → 2 O3.  Find ξ. 

The change in number of moles of species i during a reaction is proportional to its 

stoichiometric coefficient νi, where the proportionality constant is the extent of reaction, ξ;  ∆ni = 

νiξ.  Since νO2 = -3 and ∆nO2 = -.6 mol, we have -.6 mol = -3ξ and ξ = 0.2 mol. 

 For our generalized reaction, 

0 = ∑
j

j jSν  

the amount of the jth substance produced or consumed is given by 

j jdn dν ξ=  

We want to know the effect of a reaction on the free energy.  To simplify things lets limit 

our initial discussion to the simplest possible reaction,  
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A ↔ B 

We already know that at constant temperature and pressure, 

dG dn dnT p A A B B, = +µ µ  

A B- d dξ ξµ µ= +  

If we divide both sides by dξ we get 

B AT,p
G( -) µ µ
ξ

∂
=

∂
 

We can see the significance of this expression if we use this to calculate dG, the change in the 

Gibbs free energy for the reaction.  The equation is  

,T p B AT,p
GdG ( d ( - )d .) ξ ξµ µ
ξ

∂
= =

∂
 

Let’s see if we can interpret this equation.  Remember that as the reaction proceeds from reactants 

to products, dξ > 0.  This means that if µA > µB, then dGT,p < 0 and the reaction A → B will be 

spontaneous.  If µA < µB, then dGT,p > 0 and it will be the reverse reaction, B → A, which will be 

spontaneous.  Finally, if µA = µB, then dGT,p = 0 and the reaction will be in equilibrium. 

This is very important.  Note that in this equation we are using µ not µ° to determine the 

dG.  Since µ changes as the composition of a system changes, this means that as the reaction 

proceeds the value of µ changes, and therefore the value of dG changes.  Remember the difference.  

µ° is a constant for any substance at a given T.  µ depends on composition and pressure. 

We now introduce the reaction Gibbs Function, rG∆ ≡ 
,T p

G
ξ

 ∂
 ∂ 

.  For our two component 

system this is the same as r B AG µ µ∆ = − .  For a more general reaction,  
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aA + bB ↔ cC + dD 

rG∆  = cµC + dµD - aµA - bµB. 

Finally, for our most general form of a chemical reaction,  

0 = ∑ν j jS  

We have  

jr j
j

G µν∆ =∑  

If we compare this with our result for the two component case we just studied, we see that the 

condition for equilibrium is rG∆ = 0.  If rG∆ < 0 the reaction has a tendency to proceed from 

reactants to products, and is called exergonic.  If rG∆ > 0 the reaction has a tendency to proceed 

from products to reactants and is called endergonic. 

In addition to calculating the reaction Gibbs function this way, we can calculate it from 

free energies of formation.  In general, 
1

( )
n

r j f j
j

G G Sν
=

∆ = ∆∑ .  In addition, if we define standard 

Gibbs free energies of formation, we can use these to calculate standard Gibbs reaction functions.  

0
fG∆  is the standard Gibbs free energy change for the formation of a compound from its elements 

in their reference states at a pressure of one bar.  Q:  WHAT WOULD 0
fG∆ FOR AN ELEMENT IN ITS 

REFERENCE STATE BE? [0, ∆H = 0, ∆S = 0 so ∆G = 0]  Using our earlier notation for a generalized 

reaction we can therefore write the standard Gibbs free energy change for a reaction as  

0 0
r j f

j

G G (j)ν∆ = ∆∑  

 Note that 0 0 0 0 0
r C D A BG c d a bµ µ µ µ∆ = + − −  and is also given by 
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0 0 0 0 0( ) ( ) ( ) ( )r f f f fG c G C d G D a G A b G B∆ = ∆ + ∆ − ∆ − ∆ .  We conclude from this that in calculating 

free energies of reaction we can substitute standard free energies of formation for standard 

chemical potentials.  Note that this does not mean that the standard chemical potential and the 

standard free energy of formation are the same, but rather that the difference between two standard 

free energies of formation will be the same as the difference between two standard chemical 

potentials. 

Once again, I want to emphasize the difference between rG∆  and 0
rG∆ . 

rG∆  ≠ 0
rG∆ . 

rG∆  = µB - µA.          0
rG∆  = µB° - µA° 

rG∆ changes as the reaction proceeds.  0
rG∆  is a constant. 

rG∆  predicts spontaneity……. 0
rG∆  predicts equilibrium composition 

Now let’s use the reaction Gibbs function to calculate the composition of reaction 

mixtures at equilibrium.  Let’s begin with an ideal gas and the reaction A → B.  For this reaction  

 0
rG∆  = µB - µA. 

Since for an ideal gas, µ µ= +o
oRT p

p
ln , we can write this as  

ln lno oB A
r B Ao o

p pG RT - - RT
p p

µ µ∆ = + . 

Since 0
rG∆  = µB° - µA°, and since ln a - ln b = ln a/b, we can rewrite this as 

0 ln B
r r

A

pG = G + RT
p

∆ ∆ . 
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 We call the quotient p
p

B

A

, Qp, the reaction quotient.  This is the same reaction quotient that you all 

saw in General Chemistry. Thus in general we can write: 

0 lnr r pG = G + RT Q∆ ∆  

At equilibrium rG∆  = 0 and we define the equilibrium constant Kp as Kp ≡ Qp (equilibrium) 

= (pB/pA)eq.  It is important to note here that Qp = Kp only at equilibrium.   We can combine this 

definition of Kp with our previous result and obtain  

0
rG∆  = -RT ln Kp. 

This equation allows us to directly link equilibrium with the standard reaction free energy.  It is 

especially useful when we realize that 0
rG∆  = µB° - µA° =  0 0

f fG (B)- G (A)∆ ∆ .  This means that for 

any reaction where we know 0
fG∆  of the starting materials and products we can calculate the 

equilibrium constant. 

We can simply extend these results to real gases by turning to the fugacity.  We begin with  

rG∆  = µB - µA = µB° - µA° + RT ln fB/p° - RT ln fA/p° 

= 0
rG∆  + RT ln fB/fA 

which means for real gases, Qp = fB/fA and Kp = (fB/fA)eq.  

Typically we do our chemistry in solution phase as well as in the gas phase, so it would be 

nice to have a form of this relation that refers to solutions, solids and all real solutions.  Once again, 

it was G.N. Lewis of Berkeley who came up with an appropriate form by introducing the use of 

the activity.  As we noted earlier, the activity is an effective concentration for real solutions, 

whether solid, liquid or gas.  The way that the activity is used to figure out chemical equilibria is 
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through the equation  

µi = µi° + RT ln ai. 

For a real gas the activity ai = fi/p°.  In general, the chemical potential of any substance in its pure 

form is µi°.  This means that the activity of any substance pure form is 1.  

We can use the activity to generalize our definition of the equilibrium constant.  For our 

reaction A → B, the equation for ∆ rG  becomes 

∆ rG  = µB - µA = µB° - µA° + RT ln aB - RT ln aA 

= 0
rG∆  - RT ln aB/aA. 

This leads to new, more general, definitions of Q and K, Q = aB/aA and K = (aB/aA)eq. 

Now all that remains is to generalize this result to reactions with more reactants and 

products.  Let’s begin with the reaction  

aA + bB → cC + dD. 

For this reaction 

∆ rG  = cµC + dµD - aµA – bµB 

= c(µC° + RT ln aC) + d(µD° + RT ln aD) - a(µA° + RT ln aA) - b(µB° + RT ln aB) 

= 0
rG∆  + RT(c ln aC + d ln aD - a ln aA - b ln aB) 

Which yields 

0 ln
c d
C D

r r a b
A B

a aG G RT
a a

∆ = ∆ +  

Our reaction quotient is 

R
C
c

D
d

A
a

B
bQ ( a a

a a
)=  
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and our equilibrium constant is 

K ( a a
a a

)C
c

D
d

A
a

B
b eq=  

Finally we can further generalize to our most general representation of a reaction, 

0 S
j

j j= ∑ν .  For this case 

jr j
j

G µν∆ =∑  

= +∑ν µj j j( RT a )0 ln  

0 lnr j j
j

= G RT( a )ν∆ + ∑  

0 ln j
r j

j

= G RT ( a )ν∆ + ∏  

where 

j
nx x x x x∏ = ⋅ ⋅ ⋅⋅⋅1 2 3  

and therefore 

j j
j j

j j eq

Q = a and K aν ν 
=  
 

∏ ∏  

Since at equilibrium, rG∆  = 0, we have for any reaction 0
rG∆  = -RT ln K.  

The equilibrium constant, K, is a function of the temperature only.  However, because it 

contains stoichiometric coefficients, the number we calculate for an equilibrium constant depends 

on how we write the chemical equation.  For example, the equilibrium constant for the reaction  

H2 + 1/2 O2 → H2O 

will be different than the equilibrium constant for the reaction 
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2H2 + O2 → 2H2O. 

For this reason, you should always write a balanced chemical reaction along with your equilibrium 

constant to indicate exactly what reaction the equilibrium constant refers to.  Note that although 

the equilibrium constant changes when you change the way the reaction is written, the 

equilibrium compositions calculated from the equilibrium constants are the same. 

Let’s look at our equilibrium expression for the specific case of gases.  For a real gas, aj = 

fj/p°.  So 

j

j

j
eq

f
K

p

ν  
 =   °  
∏  

This form is rarely used, because although fugacities can be calculated as we showed earlier, they 

are extremely hard to calculate for mixtures of gases.  This form of the equilibrium constant is 

exact and will depend only on the temperature of the system. 

For ideal gases, the form of the equilibrium constant is  

K ( (
p
p

) )
j

j
eq

j=
°∏ ν   

Since the equilibrium constant based on the ideal gas law is not the true equilibrium constant, but 

only an approximation, if we use this equation to calculate the equilibrium constant for real gases, 

it will depend on both temperature and pressure.  This is because under most conditions, the ideal 

gas pressure will not equal the fugacity.  To see this note that we can rewrite the equilibrium 

constant based on fugacities as 

0

j

jj
j

j

p
K

p

ν
νγ

 
=  

 
∏ . 
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Since K is independent of pressure, and γ depends on pressure and temperature, the approximate 

equilibrium constant calculated using pressures will also change with pressure. 

The p° in this equation has important ramifications.  Remember that 0
rG∆  = -RT ln K.  In 

this equation, K is the argument of a natural logarithm.  Functions like ln and exp must have 

dimensionless quantities for their arguments.  Suppose we have a reaction like  

2NO2(g) → N2O4(g). 

For this reaction K is given by 

 K ((
p
p

) / (
p
p

) )2 4 2N O NO 2= 0 0  

If we weren't dividing by p°, 1 atm, then K would have units of either atm-1 or torr-1.  A second 

point is that it is easy to see that unless we divide by p°, K would have a different value if we 

measure pressure in torr. 

For example, if at equilibrium, peq(N2O4) = 0.75 atm and peq(NO2) = 0.5 atm then if we 

don't divide by p°, K = .75/.52 = 3 atm-1.  However, if we measure p in torr, then K = 570 torr/(380 

torr)2 = 3.95 x 10-3 torr-1.  This is all resolved if we divide by p°.  In the first case K remains the 

same:   

K ( (.75atm / 1atm)
(.5atm / 1atm )

) 32= =  

For the calculation in torr,  

K ( (570torr / 760torr)
(380torr / 760torr )

) 32= =  

Let’s look at a couple of examples.   

Example 1:  What is K for the reaction 3H2 + N2 → 2NH3 at 298K?  To answer this we first need 
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to calculate 0
rG∆ .  0

fG∆ (H2) = 0
fG∆  (N2) = 0.  0

fG∆  (NH3) = -16.45 kJ/mol.  Therefore 0
rG∆  = -

32.9 kJ/mol.  0
rG∆  = -RT ln K and therefore  

K = exp(- 0
rG∆ /RT) = exp( 32900 J mol

8.314 J mol K 298K
)

−

− − ⋅

1

1 1  = exp (13.3) = 5.84 x 105.   

So this reaction is highly favored. 

 We can use this example to show the danger of using 0
rG∆  to calculate equilibrium 

constants.  Suppose we had mistakenly measured 0
rG∆  = -31.9 kJ/mol, a 3% error.  K calculated 

from this erroneous 0
rG∆  = 3.91 x 105, a 33% error.  The error is amplified because of the 

exponential relationship between 0
rG∆  and K.  For this reason, equilibrium constants calculated 

from 0
rG∆  should be taken with a grain of NaCl(s).   

Example 2:  For the reaction H2 + I2 → 2 HI at 298 K, the pressures of HI and H2 were measured 

as 0.50 atm and 2.0 atm respectively.  Is the system in equilibrium?  0
fG∆  (HI) = 1.7 kJ/mol.  The 

reaction quotient for the mixture is given by  

Q ( a
a a

)HI

H I

=
2

2 2

 

The activity of a solid is usually 1.  This makes sense, since the activity measures the effective 

concentration, and the solid is for all practical purposes a pure substance, which by definition has 

an activity of one.  For the gases we are forced as usual to assume ideality, so  

 Q P
P

= .25
2

=.125HI
2

H2

=  

K = exp(- 0
rG∆ /RT) = exp (-1700 J/mol)/(8.314)(298) = .254.  Since Q = K at equilibrium, and Q≠ 
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K, the system is not at equilibrium. 

In practice it is common to find systems that are not in equilibrium.  There are two reasons 

for this.  One is simply that energy is continually being pumped into systems and disturbing them 

from equilibrium.  For, example, every time a photosynthetic system absorbs light, the energy 

storage proteins are removed from equilibrium.  The second is that some systems can take a 

substantial time to reach a thermodynamic equilibrium.  A classic example is the reaction between 

H2 and Cl2 to form HCl.  This reaction takes years to reach equilibrium in the absence of light. 

These considerations demonstrate one of the limits of thermodynamics - thermodynamics 

can tell us what will happen, but it can't tell us if it will occur in a finite amount of time.  The latter 

question is answered by chemical kinetics, which we will be considering at the end of the semester. 

 At this point we've shown how to calculate equilibrium constants from free energies.  

However, it is useful to know how these equilibria will change when the reaction conditions, 

particularly temperature and pressure, change.  Knowing this can help us choose the optimum 

conditions for running a reaction.  For example, raising the temperature at which a reaction is run 

may dramatically increase the reaction yield, but it can also dramatically decrease the reaction 

yield.  Only one of these outcomes is desirable. 

Let's examine the Temperature Dependence of K. If we begin with ∆G° = -RT ln K,  this 

can be arranged to 

ln K - G
RT

=
∆ 0

 

If we remember that ∆G° = ∆H° - T∆S° this becomes 

ln K - H
RT

S
R

= +
∆ ∆0 0
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This equation is the integrated form of the Van't Hoff equation.  It can be used to determine ∆H° 

and ∆S° by plotting ln K vs. 1/T.  It assumes that ΔH is constant over the temperature range. 

If we take the derivative of ln K with regard to T we get 

d ln k
dT

H
RT2

=
∆ 0

 

the Van't Hoff equation. 

This shows us that if ∆H° > 0, ln K increases when T increases.  This should match our 

intuition that raising the temperature of an endothermic reaction helps drive it to completion.  On 

the other hand, if ∆H° < 0, ln K decreases when T increases.  So for an exothermic reaction raising 

the temperature drives the reaction back toward products. 

This is an example of Le Chatelier's Principle, which states that a system at equilibrium 

when subjected to a disturbance minimizes the effect of the disturbance by moving to a new 

equilibrium.  Let’s look at an example of applying Le Chatelier's Principle by asking what happens 

when we heat a system.  According to Le Chatelier’s Principle the system will act to minimize the 

effect of heating.  In other words, the system will act by moving to a new equilibrium that requires  

that heat is absorbed.   

If we have an endothermic reaction, heat is absorbed in going from reactants to products, 

which pushes the equilibrium toward products, in accord with our quantitative result.  If we have 

an exothermic reaction, heat is absorbed going from products to reactants, which pushes the 

equilibrium toward reactants, again in accord with our quantitative result. 

Let's do one last derivation on the temperature dependence of equilibria and actually 

calculate a new K when we raise the temperature.  We begin with the Van't Hoff Equation 
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d ln K
dT

H
RT2

=
∆ 0

  

and then integrate to yield 

2 2

1 1

0ln

ln
ln

k T

2k T

Hd K dT
RT
∆

=∫ ∫  

This is the most general form of the equation.  In general, ∆H will depend on the temperature, and 

we have to explicitly consider the temperature dependence of ∆H° in evaluating the integral.  

However, if the temperature range is reasonably small, we can assume that ∆H° is constant and 

pull it out of the integral to give 

2 2

1 1

0ln

2ln

k T

k T

H dTd ln K
R T

∆
=∫ ∫  

which yields 

ln lnK K = - H
R

( 1
T

1
T

)
2 1

2 2

0

− −
∆  

or 

0

2 1

1 1

2 1

H
R T TK K e

 ∆
− − 

 =  

This equation is useful but has the disadvantage that once ∆H° varies much from its value at the 

initial temperature, it can introduce gross inaccuracies in the value of K at the new temperature.   

If we wish to calculate accurate values of K(T) the best procedure is to turn to an accurate 

table of ∆G°(T) and use interpolation to get ∆G° if your value of T falls between the listed values.  

For example, if we want to know ∆G°(296) and we know ∆G°(298) and ∆G°(295), then ∆G°(296) 

≈ ∆G°(295) + 1/3(∆G°(298)-∆G°(295)).  K(296) can then be calculated from ∆G°(296) with 

reasonable accuracy. 
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Having considered the effect on our equilibrium composition of a change in temperature, 

it seems only natural to ask how pressure affects equilibrium compositions.  We can see quickly 

that at constant temperature the equilibrium constant is independent of pressure, i.e., ( K
p

)T
∂
∂

 = 0.  

We begin with  

K e
rG
RT=

−
∆ 0

 

Then  

( )
0

0
rG
RTK e

p p

∆
− ∂ ∂

= =  ∂ ∂  
 , 

since, in the final derivative, all three terms, T, R and ∆ rG
0  are constant, so ( K

p
)T

∂
∂

 = 0. 

However, and this is really important, even though K is independent of pressure, the 

equilibrium composition may not be.  For example, consider again our reaction 2NO2 → N2O4.  

If we have at equilibrium PN2O4 = 0.75 atm and PNO2 = 0.5 atm, plugging into the equilibrium 

expression, K = (pN2O4/p°)/(pNO2/p°)2 yields K = 3.  Now let’s raise the total pressure by a factor 

of 10 while keeping the mole fractions constant.  We find that Q = (pN2O4/p°)/(pNO2/p°)2 = 7.5/52 = 

.3.  Therefore Q ≠ K, and the system is not in equilibrium.  Since Q is less than K at this higher 

pressure, the equilibrium composition shifts toward products, and since 2 mols of NO2 are 

consumed for every mole of N2O4 produced, the pressure is reduced.  This is in keeping with Le 

Chatelier's principle since the disturbance, the increase in pressure, is reduced by the change in the 

equilibrium composition. 


